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Abstract

The stability loss of a finite sized layered system subjected to a uniform compressive load parallel to the free surface
and containing an interface crack is considered. The eigenvalue problem for the system of homogeneous Cauchy-type
singular integral equations of the second kind is formulated and the critical value of the load is found numerically by
utilizing Gauss—Chebyshev integral formula. Numerical results for the critical load are presented for various geo-
metrical parameters and material properties of both layers. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Composite structures in some cases can work under the action of a compressive load. Interface cracks in
such structures appearing because of manufacturing processes can be the reason of significant reduction of
the load-carrying capacity under compressive loads. The presence of interface cracks in such cases may lead
to fracture of structures by means of crack opening. The buckling state may occur at relatively small
compressive loads due to some sufficiently large embedded delamination. Thus a better understanding of
the behavior of the layered systems with interface cracks under a compressive load is quite important for
the design of composite structures.

Many investigations have been performed to clarify the influence of a crack or an array of equally spaced
co-planar cracks on the compressive strength of infinitesimal homogeneous or composite structures. Keer et
al. (1982) utilized exact equilibrium equations for the Jaumann rate of the Kirchhoff stress to estimate the
buckling loads of a half-space (or a layer) containing an array of equally spaced co-planar cracks, re-
spectively. The problems of stability loss of infinite homogeneous structures with cracks were considered by
Gus (1989) using the methods of complex variable functions and Riemann-Gilbert problems. Wang et al.
(1991) considered local buckling problems for a half-space containing a through-the-width crack by the use
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of the stability equation derived from the mathematical theory of elasticity. Recently, Wang and Takao
(1995) considered local buckling of a layer bonded to a half-space with an interface crack by means of the
method of singular integral equations.

In the present paper the stability loss of a finite sized layered system subjected to a uniform compressive
load and containing an interface crack is considered. The effects of the material properties and geometrical
parameters of the layers on the local delamination buckling behavior of layered system has been investi-
gated.

2. Formulation of the problem

A plane deformation of two-layered rod |x|<L, & <y<hy, |z| < oo with a tunnel interface crack
|x| <2a, y = 0 described in Fig. 1 is considered. The thickness of the upper layer is #; and the thickness of
the lower one is 4y; w;, v; (i = 1,2) are the shear modulus and Poisson’s ratio, respectively. The subscripts,
i = 1,2, denote the upper layer and the lower one. The layered system is subjected to a uniform compressive
strain gy, parallel to the free surfaces y = i, and y = h,. This strain can be produced by the compression
upon the sides |x| = L of two absolutely rigid plates which are in a frictionless contact with the body.

When the compressive load increases and reaches its critical value, an adjacent equilibrium buckled state
becomes possible. It means the local delaminated layer deflects into a nonflat configuration and in addition
to the initial uniform deformation state, incremental stresses o;;, strains ¢;; and displacements u and v are
induced. These increments are assumed to be infinitesimal quantities.

The equilibrium equations for buckling (in the absence of body forces) may be expressed as (Wang and
Takao, 1995)

azu,- azu,- azv,- R(l - 2V,’) 62u,-
201 —v)) =—+ (1 = 2v;) — — =
(1-w) o + ( Vi) 5 oy m a2 =0 "
azvi @21)[ azu,- R(l — 2V,‘) azv,-
2(1 —v; 1 —2v)— - =
(1=v) 0)? + i) ox2  OxQy U, Ox2 ’
where
Ay
€9 €9
s Vy "
X
Ha> Vs 2a
h 2
2L

Fig. 1. A layered system with an interface crack.
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24,
p=-"F g 2
Tl -y 0 (2)

Without loss of generality assuming L = © the boundary condition for the incremental state can be
written as

ov;
ui(:l:n7y) :07 é(inay) :07 hlgyghb (3)
o1y(x,h) =0, Oy, 1) =0, |x]<m,
02y (x, —hy) =0, Ouy(x,—h2) =0, |x| <m, (4)
o1,(x,0) = 05,(x,0), Oy (X,0) = 024,,(x,0), |x| <m,
o1,(x,0) =0, O1y(x,0) =0, |x] <a, (5)
ul(x,()) = u2(xﬂ O) U](X, 0) = Uz(x, O)a ‘x‘ > a. (6)

The solution of the system of differential Eq. (1) can be written in the form as Wang and Takao (1995)

o % i
hi= 0x0y’
P(1 =2, &, ’o; 7
v = 2(17V,-)7T 2 +(172Vl)67y2 ( *1,2)5

where the displacement functions can be presented as

1 2 .
@;(x,¥) = —(dio + Bio + Cio + Dyo) + —Z(A,-pem”y + B + Cpe PV + Dye P ) cospx (i = 1,2).
Y T
p=1
(8)
and oy, (i,j = 1,2) are the following roots of the associated characteristic equation
Pi(1-2v;)
o = /1 =5 p—
)= 1,2). 9)
op = /1 -4
Hi
Here 4,,, B;,, Cip, Diy, (i = 1,2), are eight unknown functions of the parameter p. These functions are to be

determined by the boundary conditions.

It can be easily demonstrated that the displacement increments expressed by formulas (7) together with
Eqgs. (8) and (9) satisfy the conditions (3).

Substitution of Eq. (8) into Eq. (7), using the Cauchy relations between the strain and displacement
increments and the linear Hooke relations between stress and strain increments leads to the following
expressions for the displacement and the stress increments

o0
u; =23 P (Ao @1 + Bipape?™™ — Cipoye 71 — Dyope 7*2) sinpx
p=1
- (i=1,2), (10)
v = — 23 PP (AyodyeP* 1 + Byer* 4 Cyyof e P41Y + Dye P*2Y) cos px
p=1
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o0
Oy = % Sp (Aipgl_epmy + By, lieP? — Cplie 7Py — Dl_pCie*pazzy) cospx

. (i=1,2),
Oiy = %Z:lp } 245057 + By (1 + o )& + 2C00,6770 + Dy (1 + 0 )e 72| sinpx
=
where
2u;
9[ = 11— é\)i (V,'OC,'] — (1 — V[)a?l),
(= =2,

Substitution of Egs. (10) and (11) into Egs. (4) and (6) yields the following set of equations
A0 4 By LM — C 0,67 — Dy LenPh = 0,
241,03, €71 4 B, (1 o) 4 2C 00, e P 4 Dy (1 + o, )e 72" = 0,
Aypbhe 72 4 By Le P2 — Cy 0,67 — Dy, (e 2 = 0,
245,05,€ 72" 4 By (1 + 03, )e 72" + 2Cy 05,6722 + Dy (1 + 03, )e7"2"2 = 0,
A1p01 + Biply — Cip01 — D1y = Aap0s + Byply — Copbh — Dy,

%(2‘411)0‘%1 +Bip(1 +oy) + 2Cp0; + Dip(1+ ay)) = 242,00, + Bay(1 + 03,)
2

+ 2C2p“§1 + D1 + O‘%z)v

2 & .
p g p* (Apony — Aapoar + Biyos — Boyony — Crpoiy 4 Capttar — Diporys + Doy sinpx = 0,
p=1

2 o0
EEp%mﬂﬁ—@ﬂ;+3m—3@+aﬂﬁ—QW;+DW—D@ﬁmm:m,|ﬂ>a
p=1
Further, we introduce the following two unknown functions

710 = L a(.0) — w(x,0),

ag

folx) = 4 [01(x,0) — v, 0)].
It 1s clear, that
fu(x)=0 and f,(x)=0 for |x| > a.
Substitution of Eq. (10) into Eq. (14), using Eq. (15) and applying Fourier transforms yields
P (A1pous — Aaptiar + Biyotis — Bapotas — Cryoiy + Capttar — Diyotin + Dayoinn) = Fu(p),

— P (Aipoy, — A0y + Bip — By + Ciptyy — Copt3y + Dy — Do) = Fy(p),
where

l a
Rp) = /0 £u(&)cospEde,

| O
Flp) = [ A@sinpzac,

(17)

From the first six equations of Eq. (13) and Eq. (16) one can express the eight unknown functions A4,,,

B;,.Cy, Dy, (i =1,2), in the form
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Ay, = C,R1(p) + Di,R12(p),
Bip = CipRai (p) + DipRoa(p),
Az = CipRs1(p) + DipR5(p), (18)
By, = Ci,Re1(p) + DiyRe2(p),
Cyp = CipR31(p) + DipR3:(p),
D, = CipRa1(p) + D1pRa2(p),
Cip = ZAD) A(p) [Fu(P)Rs2(p) — Fu(p)R22(p)],
D F,(p)R F,(p)R
= ZA(p) [Fo(p)R71 (p) — Fu(p)Rsi (p)),
where
A(p) = Ry (p)Rs2(p) — Rs1 (p)R2(p). (19)
The values of R;;, (i =1,2,...,8;j=1,2), are functions of material constants, compressive loads and the
parameter p, their expressions are presented in the appendix.
Further, substitution of Eq. (11) into conditions (5) gives for |x| < a
2 [es)
- E_ p’ (41,01 + B¢, — Cip1 — Dyyly) cospx = 0,
(20)

= E p*[24,,03, + B, (1 + o3,) + 2Cy,08, + Di,(1 + o,)] sinpx = 0.

p—

Then substitution of expressions for 4,,, Bi,, Ci,, D1, of Eq. (18) into the first equation of Eq. (20) leads to
the following relation

2 RPN P) + FPQapeosp =0, K <a @

where the functions Q;; depend on the material constants y;, v; and the compressive loads P; and they are
presented in the appendix.
Applying Fourier transforms to Eq. (21) and expressing Oy;(p) as

0y(p) = (Qy,(P)OT) + OF, (22)
with
07 = lim 01;(p),

Eq. (21) can be written as

b -1 [ sinpcosprp@)de+ 1 [ HOKNED) +AOK(E D)0 =0, (23)

ap=1

where f; and K;; depend on y;, v;, P; and they are given in the appendix.
To extract the singularity from the second term of (23) we take into account that the function f,(¢) is odd
and transform this term in the following manner
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%/a XOO: (sinpécospx — cospésinpx)f, (& / Zsinp(é —x)f,(&)dé
p=1 -

—a a 7]

B “1 sin(¢—x) .
_E/_QZ1—cos(§—x)f”(af)dC

_ C—x

*%/ﬁ ctg—— 3 fv(i)di

e fox 2 1
= _afv(f)(Ctg 7 )dé—kE

E—x
< [ he

Applying a similar approach to the second of Eq. (20) the system of homogeneous Cauchy-type singular
integral equations of the second kind is obtained in the form

g e Sx 20\ L
Bifu(x / f f—&—%/ﬁ(é)(Ctgézx—é_x)dg

/[f VK (E,3) + ol ©)Kial&,2)]dE = 0,

u 1 ¢ ~ - 2
~posit) 4y [ L dé+ﬂ/fu(§)<ctgézx—ix>dé

1 a
T /_a[f“(@’@l(@x) +FOKn(EX)AE =0, W <a,

(24)

where the expressions for the coefficients f8; (i = 1,2) depending on the material constants and compressive
loads as well as the kernels K;;(£,x) (i,j = 1,2) are presented in the appendix.

The additional conditions which must be satisfied to ensure, that the displacement be single valued are
the following

RO
- | noa=o

p (26)
1
Elaﬁ(f)dfzo, |x| < a.

The buckling load P, i.e. the critical value of compressive stress Py, can be found from the condition of
existence of a nontrivial solution of the system (25). To define this value a numerical analysis of the systems
(25) and (26) will be applied.

3. Solution of the system of singular integral equations

Substituting £ = as and x = at one can rewrite the system of integral equation (25) in the form



V.V. Loboda, I Yu. Mityukova | International Journal of Solids and Structures 38 (2001) 7283-7296 7289

/f* d+—/f <actga—t%)ds
1

+—/ K7 (5 0) + £ (9)Kp (5, 1)] ds = 0,

“( ) (27)
/ f / f (Cl Ctg a —! — :) dS
1
o / K (520) + £ (K (s.0)] ds =0
and the additional conditions can be presented as
1
1 / fi(s)ds =0,
g (28)
L rsas=o
S WACTS
where
fu*(S) :fu(as)7 fL*(S) :fv(as)7 (29)

Ki(s,t) = aKy(as,at) (i,j=1,2) and [¢f| <1.

Using the behavior of unknown functions at the crack tips (Williams, 1959) we will find these functions
in the form (Wang and Takao, 1995)

() = (s — g5(s)sin
fu (S) - \/l—li—gz[gl( )COSG g2( )S 9]7 (30)
17(6) = [ (5)5in0 +5(5) cost],
where

0= —yln(1—s>) and y—% (H\/_Vﬁ‘ﬁz) (31)
172

Substituting of Eq. (30) into Egs. (27) and (28), consider the obtained relations at the points ¢ =
cos(n(k/n)), (k=1,2,...,n— 1), which are the zeros of the Chebyshev polynomial U, (¢) (Erdogan and
Gupta 1972) Employing the Gauss—Chebyshev quadrature rule,

Ww(s) ds "1 1
ZZZW(SI) S; — Ity

V1l —s2s—t
with
2i— 1
s,-zcos(n ’2n ) (i=12...n) (32)

and using the following approximation
Si(te) =
1o (1) &

; [f (sk) +f:(sk+l>}7
%[f (s¢) + 17 (se1)],
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Egs. (27) and (28) can be reduced to the following system of 2n homogeneous algebraic equations with 2n
unknown values g;(si) and g;(si) (i=1,2,...,n):

cosf cosd sin0 sin0
% g1 () —/— Vi : +g1 Sk1) — — 2 g;(skﬂ)ikzl
VI-si V1= s V1= Sk
IS . 2 . .
+- gi(s:)|sin0 actg al R + K (s, te) | + K7, (s, ) cos 0;
n4 il
1 1 s —t 2 y y .
+g5(s:) [cosé),- L: -y +3 (a ctg a 5 k_ m) +K12(si,tk)} — K”(s,«,tk)smf),} }
=0,
ﬁ sin Bk tg sin 9k+1 cos Hk (s cos 6k+1
1 Sk+1 k+1
V1= V1= Sk V1= V1=t
1 1 S; — 1, 2 « % .
{ {cos@ Li — +§ (a ctg a 3 k_ — tk) + K5, (81, tk)] + K5, (si, tk)sm(%}
1 =t 2
+g5(s;)| — sin6; +=(actg as k_ + K5, (si,te) | + K5, (si, ) cos 0,
-4 2 2 Si—t
1 n
O,;Z g (s;) cos0; — g5(s;)sin0;] =0,- Z g (s;)sin0; + g5(s;) cos ;] =0, (34)

i=1
where
0; = —yIn(1 — 7).

The buckling load P, can be found from the condition that the determinant of the obtained system is
equal to zero.

4. Numerical analysis

The influence of the stiffness ratio and the geometrical parameter %i/a upon the critical load have been
analyzed. The corresponding numerical results are presented in Figs. 2-7. The Table 1 exhibits the behavior
P, with respect to the parameter of discretization n for u,/p; = 10, vy = 0.3, v, = 0.2 and 4, /a = 0.5,
hy/a =4, L/a = 2n. It can be clearly seen that the results of the calculations are in quite good agreement for
all values of n and the difference of P, obtained for n = 30 with respect to the associated result for n = 50

Table 1
Effect of the value of n defining the rate of SIE discretization upon the buckling load P. for p,/p; =10, vy = 0.3, v, = 0.2 and
hi/a=0.5,h/a=4,L/a=2n

n 20 25 30 35 40 45 50

P/ 0.26957 0.26839 0.26775 0.26735 0.26710 0.26693 0.26680
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v,=0.2,v,=0.3,
el hja=2,Lla=r Ju,=2
0,10
/u,=5
0,08- u,/u,=10
0,06
0,04
0,02
T T T T T T h1/a
0,05 0,10 0,15 0,20 0,25 0,30

Fig. 2. Variation of the buckling load with the thickness of the layer, for y; > p,, iy < hy and vi =0.2, v, =0.3, hy/a=2,L/a = =.

P,/
o1z v,=0.2, v,=0.3,
h,/a=3, Lla=n
0,10+
0,08+
h,/a=0.3
0,06+ \
0,04+ h /a=0.2
0,02- h,/a=0.1
0 5 10 15 20 Hilhy

Fig. 3. Variation of the buckling load with the shear modulus ratio, for p; > p,, hy < hy and vy =0.2, v, =0.3, lh/a=3, L/a ==.

is less than 0.01%. Taking into account that for the other loading the dependence on # is similar to the
analyzed case the results in Figs. 2-7 are presented for n = 30.

Particularly Fig. 2 describes the critical loads P../u, as a function of parameter %, /a for various shear
modulus ratios u,/u, (1t; > i) and vy = 0.2, v, = 0.3, hy/a = 2, L/a = 7. Tt can be seen from these results
that decreasing of p, leads for the fixed values of the other parameters to the increasing of P./u, and
increasing of %, /a leads to the increasing of P./u, as well.

In Figs. 3-6 the critical loads are shown for various geometrical parameters as a function of stiffness
ratio. It follows from these figures that the critical load slightly depends on the coefficient y, /i, for small
values 7 /a (Figs. 3 and 5) and %, /a (Figs. 4 and 6). On the other hand this load becomes sensitive to the
variation of the stiffness coefficient for larger values of the mentioned parameters. Moreover increasing of
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/Dcr/l’t1

v,=0.3,v,=0.2,
0,10 h/a=1,L/a=n/2
0,09
0,08
0,07 h,/a=0.25
0,06
0,05 h,/a=0.2
0,04 \

h,/a=0.15

00t 5 10 15 20 Mot

Fig. 4. Variation of the buckling load with the shear modulus ratio, for u; < u,, hy > hy and vy =0.3, v, =0.2, hy/Ja=1, L/a = /2.

P/, v,;=0.3,v,=0.2,
o1 h/a=1,Lla=n/2
' h,/a=0.25
0,10- //-
0,09-
0,08-

h,/a=0.2
0,07-
0,06-
0.057 h,/a=0.15
0,04-
0 5 10 15 20 M oM

Fig. 5. Variation of the buckling load with the shear modulus ratio, for u; < u,, iy < hp and vi =0.3, v, =02, hy/Ja=1, L/a = /2.

hi/a (Figs. 3 and 5) or hy/a (Figs. 4 and 6) lead to the essential increasing of P../u, that is quite reasonable
from the physical point of view.

The values of the critical load has been found for various values of geometrical and mechanical pa-
rameters of the rod. Particularly, for the large values of 4, /h; and L/a the obtained results almost coincide
with the correspondent results of the paper of Wang and Takao (1995). This statement can be confirmed by
Fig. 7, where the behavior of P../u, with respect to h,/a is shown for v = 0.3, v, = 0.2, u,/u, = 10,
hi/a=0.5,L/a = 5n. It should be mentioned that the correspondent result of Wang and Takao (1995) for
the same vy, vo, i, /1y, by /aand L/a — oo, hy/a — oo is Pe /1y = 0.268. A comparison shows that the values
of P./u, in Fig. 7 tends to this quality and as early as for A, /a = 1.5 the difference is less than 0.1%.
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v,=0.2, v,=0.3,

R I, h,/a=2, L/a=n
0,12 4 h2/a=0.3
0,10
0,08 4

h,/a=0.2

0,06
0,04 4
0021 h,la=0.1

0 5 10 15 20 Mk,

Fig. 6. Variation of the buckling load with the shear modulus ratio, for y; > p,, iy > hy and vy =02, v, =0.3, hyJa=1, L/a==.

v,=03,  v,=0.2,  p/u=10,

Felby h,/a=0.5, L/la=5n

0,30

0,25

0,20

0,15

0,10

0,05

0,00 . , , . h,/a
0,0 05 1,0 1,5 2,0

Fig. 7. Variation of the buckling load with respect to the geometrical parameter #,/a, for v = 0.3, v, = 0.2, i, /u, = 10, i, /a = 0.5 and
L/a = 5m.

5. Conclusion

In the present paper the plane problem of the stability loss of a finite sized layered system subjected to a
uniform compressive load and containing an interface crack is considered. By using finite Fourier transform
the problem is reduced to some homogeneous system of singular integral equations with respect to the
increment of the displacement jumps across the material interface in the region of the crack. Further, by
means of a collocation procedure and Gauss—Chebyshev quadrature rule, the mentioned system is reduced
to a system of homogeneous algebraic equations. The critical load has been found from the condition that
the determinant of the obtained system is equal to zero.
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The numerical results for the critical load demonstrate the influence of the material properties and the
geometrical parameters of both layers upon the local delamination buckling behavior of the layered system.
By means of the presented algorithm the critical values can be found for any relations between the geo-
metrical and mechanical parameters of a bimaterial rod with an interface crack.

Appendix A

Ri(p) = a“ el Ri(p) = a31 o Pt
Ry (p) azl e P o/|1+otp)h|’ Rzz(p) 6141 *2[79(12}’1
Ry(p) = A (p) [Vai(p) Va2 (p) — Vo (p) Vi (p)]e 2™,
Ralp) = - [ Va0 P 0) + P ) a2

a a
Rsi(p) = Viu(p) + Rss(p) — + Rai(p) ==,

A, Ay

an [22%)
Rei(p) = Vai(p) + Rsi(p) —— + Rai(p) —

A, As
R7i(p) = Ri(p)ot + Rai(p)oiz + R3i(p)oar + Rai(p)ans — Rsi(p)oar — Rei(p)otan — o,
Rsi(p) = Rll(ﬁ)“fl + Roi(p) — R31(p)a§1 — Rax(p) — RSI(P)“%] — Rei (p) + 06%17
Re(p) = Ri2(p)o) + R (p) — Rax(p)e3, — Raa(p) — Rsa(p)o; — Rea(p) + 1
Ai - 01(1 + O(?z) 2C azl’
ay;; = 9,(1 + 061-22) + 2(,0(?17 as; = 2C,(1 + 0(1-22),

ay; = —40; 05,17 a4 = —ay;,

bll = 91(1 + OC%Z) 2€2062 'ul s b12 = 2(020(11 010(21>
Hy H

by = (1 + “52) =61+ O‘%z)%» by = Or(1 + o‘12) 0 - 20,45 %15
2 2

by = —0i(1 + 3,) — 200007, Zl ) by = 2<92“2 Zl + 6)1c°‘21>
2

by == (1 + “gz) =G+ O‘%z)%v by = Or(1 + “%2)%+2C1°‘§1v
2

2
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1
Vi(p) = 5 [b1iR11(p) + baiRoi (p) + b3,

1
Va(p) = 5 [b1:R12(p) + bR (p) + bail,

ap o 2mih a» oy ot
VSI(P):_H P212+A_Cze —p(aartan)h 2 — 6,
2

a
V32(p) = ﬁ@ e Loty | A42C e~ wmh _ &,

Valp) = = Vi(p)0ae " — Va(p)Cae 720,

Ve (P) 2A_]22 0(2 e 2l 2_222 (1 + agz)e*p(“zﬁfxzz)hz + 20(%1,

Voolp) = 27 o o 4 TR (1 4 e 41 4 223,

Va(p) = =2Vii(p)agye ™" — Va(p) (1 + a3y )e7="2,

43(p) = Var(p)Vs2(p) = V51 () V2(p),

00 Q()C
ﬁl = _;7 ﬂZ = _2027
12 21
1 o0
Kii(¢x) = ﬁZ[Qn(p) — O] cospé cospr,
12 p=1
1 o0
Kip(&,x) = =23 [On(p) — O] sinpé cospr,
Q12 p=1
Ky (&, x) o Z 021 (p) — O5y] cospé sinpx,
O3 =

Kn(éox) = — / (0n(p) — O] sinpé sinpr,
where
Ou(p) = (p)[ 2(P)Rsi (p) — Na(p)Rs2(p)],

On(p) = (p) [Na(p)R72(p) — Na(p)R1(p)],  (i=1,2),

Nu(p) = 1R\ (p) + (iR (p) — 01,
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Ni2(p) = 01R12(p) + LiRn(p) — (4,

No1(p) = 204 Ri1(p) + (1 + o,)Rox (p) + 2013,

Nn(p) = 203, R12(p) + (1 4 o3, R (p) + (1 4 o3,).
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